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Abstract— To find the optimal maintenance policies, the DB
Station&Service AG – a railway infrastructure company which
manages the majority of the railway stations in Germany
– needs to describe the cause-effect-relationship between the
funds for maintenance and the quality of the station equipment.
To determine the influence of funding on the infrastructure
quality, it is necessary to predict the cost and effect of
maintenance measures as well as the behaviour of unmaintained
items. However, the available degradation data do not contain
any condition measurements of items which are not influenced
by maintenance. Here, we provide a model which allows to
describe the average maintenance intervals and the degradation
during these intervals based on such maintenance-influenced
data. This model can be used to predict the development of the
equipment quality and is intended to be used to determine the
necessary budget for a specific equipment quality or vice versa.

I. INTRODUCTION
Up to 2009 each replacement in the German railway

network had to be arranged separately between the German
Government and the German railway infrastructure compa-
nies, DB Netz AG, DB Station&Service AG and DB Energie
GmbH. To reduce this administrative effort, a contract be-
tween the railway infrastructure companies and the German
state was established (Leistungs- und Finanzierungsverein-
barung (LuFV)) [11].

Since then, the DB Station&Service AG and the other
infrastructure companies receive funds from the German
government for the replacement of infrastructural elements
in one amount and distribute it at their own discretion.
For maintenance, DB Station&Service AG is obliged to
invest their own funds. Replacement and maintenance ensure
the equipment condition at a high quality level. Note that
throughout this paper the term equipment refers to the
equipment as a whole, i.e., the entire equipment of a station,
a region, or country whereas the term item is used for a
specific component. The equipment quality is measured by
penalized and non-penalized quality indicators. If certain
quality requirements are not met for penalized quality in-
dicators, penalty payments to the German government are
required. In the following only penalized quality indicators
are considered.

The equipment of the DB Station&Service AG consists
of items from different classes (see Table I). Each item is
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composed of subcomponents. The types of subcomponents
an item has depend on its class. The quality indicator of
each item, for example, platforms, staircases, etc., is a grade
between 1 and 6. Hereby, 1 is the best and 6 the worst
grade. To calculate an item’s grade, a manual assessment
in which the item’s subcomponents receive a score based
on their condition is conducted. The weighted sum of the
scores across all its subcomponents is then converted into the
item’s grade. Based on the grades for each item, a grade for a
station, a region, or the whole network can be calculated as a
weighted average. The network-wide grade is then compared
to the grade necessary for the achievement of the agreed
quality targets.

Since no direct relationship between the amount of funds
used and the quality to be expected exists, the government
and the infrastructure companies agreed on the development
of a tool to determine the cause-effect-relationship between
the equipment quality and the funds in the LuFV III [12]. To
anticipate the amount of funds needed for a given network-
wide grade and reversely, we need to predict the frequency
and time of maintenance as well as the item condition.

The given data provide information on grades of each
item on a regular basis and additionally after maintenance
measures. These data cover 13 years and we do not know
how many and which maintenance measures each item has
had before this time period. The data also do not contain any
information about how an item would degrade without any
maintenance measures.

The contribution of this paper is to provide a data-driven
method to model the average degradation and maintenance
time points of an item where the data do not contain any
information about items without maintenance.

This paper is structured as follows: In the second chapter,
we provide a short overview of the literature considering
data-based degradation functions and maintenance planning
in the railway sector as well as a broad comparison to
other areas. In Chapter III we indicate the requirements the
data has to fulfill for our approach to be applicable and
describe the details of our use case. Afterwards, we explain
our handling of the maintenance influence in the data. In
Chapter IV, we show the obtained degradation function.
Finally, we conclude this paper and provide suggestions for
further research.

II. LITERATURE REVIEW

The infrastructure companies in the German railway sec-
tor have to provide a cause-effect-relationship between the
infrastructure quality and the funds they partly receive from



the government. This relationship has first been examined
for the DB Netz AG which is responsible for the railway
tracks, bridges, etc., in Germany in [5].

For this cause-effect-relationship, the development of the
equipment condition over time and the influence as well
as the need of maintenance measures have to be known.
Therefore, degradation functions are required. These have
been widely studied in different contexts. For example,
ordinal regression functions have been determined in [1] for
bridges whose condition is represented by grades. A review
of different options to describe the degradation of railway
tracks is given in [3].

Neuhold describes in [7] how to prepare track condition
data and obtains linear regression functions for the standard
deviation of the track geometry.

Saadat analyses the mean-time between failures for track-
circuits in [9].

Quiroga states a mathematical optimization approach to
maintenance scheduling for railway tracks and develops a
heuristic to solve the problem in [10]. In [6], Letot uses
a random coefficient Wiener degradation-based process to
model track degradation. The effect of maintenance is de-
scribed by a probabilistic model and the maintenance costs
are assessed with a Monte-Carlo approach. In [8], Prescott
models the deterioration of the ballast by a Markov process
and also considers the deteriorating effect of the maintenance
measures to analyse the effects of different maintenance
strategies.

In railway stations, items of many different classes are
used. Some of these can be compared to structures used in
other contexts. For example, platforms can be compared to
sidewalks whose deterioration was analysed in [2] with finite
element analysis. Heitel compares life cycle cost analysis for
pedestrian overpasses in [4].

To the best of the authors’ knowledge, no degradation
functions for the equipment in railway stations have been
given yet.

III. METHODS

To predict the required amount of financial resources for
a specific quality or vice versa, it is necessary to know the
average degradation of the station equipment as well as the
effect of maintenance measures. Here, we use a data-driven
approach to model the average life cycle of different types
of station equipment. In this section, we first describe the
requirements the data have to fulfill in order for our approach
to be viable in a general context and then present the details
of the implemented approach.

A. Data requirements

The model we derive in this section quantifies the effect
of maintenance on the age induced degradation of construc-
tional objects by a data-based approach. The data at the basis
of this model needs to consist of several time series per class
of item to be modeled. Each time series needs to contain
the item’s age and quality at the time of measurement. We
furthermore need to be able to distinguish regular quality

TABLE I
LIST OF THE 21 EQUIPMENT CLASSES AND THEIR SERVICE LIVES.

no. class name service life
(years)

1 platform halls 80
2 pedestrian overpasses 95
3 pedestrian underpasses 100
4 floors and staircases in public areas 50
5 entrance doors 23
6 flat roofs 104
7 steep roofs 117
8 facades 63
9 windows 32
10 underground passenger stations 100
11 walls 67
12 platform roofs 80
13 ramps on platforms 80
14 staircases on platforms 90
15 platforms 70
16 passenger information systems 12
17 passenger elevators 15
18 escalators 13
19 dodgers 40
20 windbreaks 40
21 lighting poles 40

measurements from those taken right after maintenance and
replacement. A last important factor is an item’s estimated
service life which indicates the age after which it is usually
replaced.

In particular we applied our approach to the data from
DB Station&Service which contains data from 21 different
classes (see Table I for the full list) and covers a span of 13
years.

The item’s quality is indicated by a grade between 1
and 6, where 1 specifies a very good condition and 6
corresponds to the poorest possible quality. According to [12]
the grades are assessed in the following steps: First, each
subcomponent (e. g., the platform’s floor or the platform’s
guide stripes for the blind in the class of platforms) of an
item is evaluated separately, yielding a so-called base value
for each subcomponent. These base values are then weighted
according to the corresponding subcomponent’s importance
for the item’s functionality. The weighted sum of the base
values of all subcomponents yields the item’s score, which
is given by a number of points between 0 and 240. A low
score corresponds to a good condition whereas a high score
corresponds to a poor one. In the last step, the calculated
scores are converted into the mentioned grade between 1
and 6. This nonlinear conversion is illustrated in Fig. 1.

Further, it is possible to calculate a grade for a whole class
by forming the arithmetic mean of all items of this class in
a station. The grade for a whole station is then calculated as
a weighted mean of the class grades for the different object
classes. In the same manner, a grade for a whole region or
the entire country can be calculated as the sum of the grades
for the single stations, weighted by the station’s importance
in terms of the number of travelers, in each case.
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Fig. 1. Relationship between an item’s grade and score. The plot
illustrates the last step in the process of aggregation of an item’s grade: the
conversion from the score (number of points from 0 to 240) into the final
grade (1 to 6). In both cases, the lowest value corresponds to the optimal
condition and the highest value to the poorest possible condition.

B. Grade development including maintenance measures

For the development of the equipment life cycle, we work
with the measurements of the single items on the level of
scores.

In a first step, we model the score development of an
average item over time for each class.

A main challenge in the model development is that the
number of items decreases significantly with increasing age.
This is mainly a result of the intended replacement of an item
as soon as it reaches its service life. However, replacement
resources are limited and usually do not suffice to replace
all items that are older than their service life. On the one
hand, data referring to an age larger than the service life
of the corresponding class therefore comprise a significantly
smaller amount of items than the data corresponding to ages
smaller than the service life: Taking into consideration all
classes in the case of DB Station&Service, 87.1% of the
72 425 items in total have a mean age smaller or equal to
their service life whereas 12.9% are older than their service
life (see Table I for the service lives of the single classes).
Fig. 2 shows the complete distribution of the mean item age
for the class of pedestrian underpasses. It can be seen that
the number of items significantly decreases for higher ages
with a delay of a couple of years after the service life. In line
with the results for all classes, 72.7% of the 2 142 items in
this class have a mean age smaller or equal to the service life
(100 years) whereas 27.3% are older than the service life. On
the other hand, the limited replacement resources provoke a
survivor ship bias: Items that are in the worst condition are
replaced first while items of the same age in a good condition
are not replaced.

As a result of these two effects, the data after the service
life comprise only few items which are additionally in a
disproportionately good condition. The data after the service
life is thus not representative for the whole class. Therefore
we only include data up to the service life to model the
score development of an average item over its age. The
model incorporates all types of measurements, i.e., also
measurements after maintenance measures at this stage.

Fig. 2. Distribution of the mean item age. The histogram illustrates that
the majority of items is younger than the service life, here for the example
of pedestrian underpasses.

We perform a logarithmic regression on the score depen-
dent on the equipment age, using the model

a · log(bx+ 1) (1)

and the method of least squares, with a ∈ R and b ≥ 0.
Fig. 3 illustrates the resulting logarithmic fit for the

example of pedestrian underpasses (full line). The data points
represent the average score over the item’s age.

C. Handling of maintenance influence

The current model so far only describes the average
development of an item including its maintenance measures.
Since there are only limited data available and there are
items which are older than the time span for which data
was collected - meaning that the history of the station
equipment is not completely available -, the influence of
past maintenance measures remains an unknown factor. This
is revealed by the distribution of the item score averaged
over age: the gradient of the curve declines over time, with
a clear break at the service life (see data points in Fig.
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Fig. 3. Development of an average item’s quality over time. Plot
of the item’s quality given by a score (left y-axis) or the corresponding
grade (right y-axis) averaged over age for all available measurements in the
class of pedestrian underpasses (dots) and the derived model for the average
development (line).



3). Consequently, the poorest grade is never reached in the
average of the data. To ensure that this effect is not a result
of an increasing amount of maintenance measures after the
service life has passed, we also examine the data excluding
the measurements directly after maintenance as well as the
distribution of the number of maintenance measures over
age. However, the described effect persists. To account for
the difficulty that the data cannot be divided into pure
degradation and pure maintenance data, we describe the life
cycle by explicitly including the maintenance measures in
our model.

First, we determine the points in time at which an item
on average receives a maintenance measure: For every age
x, we calculate the fraction p of items that has obtained
maintenance at this age via

p(x) =
nmaintenance(x)

Nitems(x)
, (2)

where nmaintenance(x) denotes the number of maintenance
measures on items of age x and Nitems(x) the number
of items that have age x at any time point within the
investigation period. Thereafter, we derive the cumulative
frequencies at each age from these fractions:

F (x) = p(age ≤ x) =

x∑
k=0

p(age = k). (3)

By setting F (x) = y and resolving for the age x, the
ages of the yth maintenance measure can be obtained. This
procedure is illustrated in Fig. 4 which shows the cumulative
frequencies for the example of pedestrian underpasses and
indicates how times of maintenance are obtained from this
function.

In addition to the times of maintenance, the average effect
of a maintenance measure is needed. For this purpose, we
evaluate the scores of the items at their last assessment
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Fig. 4. Cumulative maintenance frequencies. Fraction of items having
obtained maintenance at each age for the class of pedestrian underpasses
plotted cumulatively. By this procedure, the average time points for mainte-
nance measures within a class can be determined. The red lines, for example,
indicate that the 10th maintenance measure for a pedestrian underpass was
performed at an age of 129 years on average.

before a maintenance measure is applied, and of their first
assessment thereafter. This data can be best modeled by

max(0, a · log(bx+ 1) + c) (4)

with a, c ∈ R, b ≥ 0 in the logarithmic function. The
maximum ensures that we do not obtain negative scores.
The evaluation of the condition at the last assessment before
(red) and after (green) a maintenance measure is depicted in
Fig. 5. The average development of the item score including
maintenance is shown as in Fig. 3 (blue).

Together with the maintenance times, the evaluation allows
assigning a specific effect to each maintenance measure in
terms of the difference between the number of score points
of an item’s condition before a maintenance measure and the
one thereafter.

IV. RESULTS

In this section, we use the gained information to build a
full life cycle model that is capable of reproducing the aver-
age item behavior within one class and can be applied to all
the different classes distinguished in the data that describes
the use case we apply our method to. For this purpose, as
described in Subsection III-C, the scores before and after
a maintenance measure are evaluated. These scores define
the upper boundary function (red) and the lower boundary
function (green) in Fig. 6. The upper boundary function (red)
shows the intervention threshold. All items whose score is
above this function for the respective age should receive
either a maintenance or a replacement measure. The need
for measures is divided into the need for maintenance and
the need for replacement. The distinction is drawn based
on the service life of an item: All items that have a score
exceeding the intervention threshold and are older than their
service life are considered to be in need of replacement. If the
item score is above the intervention threshold but the item has
not exceeded its service life, it is considered to be in need of
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Fig. 5. Evaluation of the item condition at the last assessment
before and just after a maintenance measurement. Plot of the average
condition before (red) and after (green) a maintenance measure. The dots
indicate the averaged data points whereas the full lines correspond to the
performed logarithmic regression. The development of the average score
over age, including regular measurements and measurements before/after
maintenance, is depicted as in Fig. 3 (blue).
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Fig. 6. Life cycle function. Plot of the intervention threshold (red) and of
the condition after a maintenance measure (green). The blue line corresponds
to the performed logarithmic regression including all available data. The
degradation function of an average equipment is indicated by the gray lines.

maintenance. The lower boundary function (green) describes
the condition of the item after a maintenance measure has
been carried out. The effect of a maintenance measure can
hence be derived from the difference between the upper and
lower boundary functions. After a replacement, the model
assigns the best possible condition and age zero to the new
item.

The number of maintenance measures and their timing
are determined as described in Subsection III-C. Based on
this, we know when to schedule a maintenance measure in
the model on average. The effect of a maintenance mea-
sure is determined as described in the previous paragraph.
The degradation between two maintenance measures, i. e.,
the development from the condition of an item after the
first maintenance measure to the condition before the next
measure has to be applied, is linearly interpolated. At the
beginning of the life cycle or after the construction of an
item, the best possible condition is assumed. The complete
modeled average degradation functions and the improve-
ments caused by maintenance measures between the two
boundary functions are obtained as shown in Fig. 6 (gray).
The figure indicates that the average item development
including maintenance measures (blue) can be well described
by this life cycle modeling.

To model the condition of all items and the influence of
maintenance measures it is not only essential to describe the
degradation of an average item but to be able to predict the
future score for any item. Therefore, each item is assigned
to the slope of the average degradation function according to
its age as shown in Fig. 7. The slope of the corresponding
function is applied to the initial condition of the considered
item allowing the prediction of the item’s degradation (purple
arrow in Fig. 7).

At the intersections of the predicted degradation with the
upper boundary function (red), the model schedules mainte-
nance measures. A measure improves the score of the item to
the value of the lower boundary function (green) regardless
of the previous score. This case is indicated by the second
dashed purple arrow in Fig. 7. If no maintenance measure

Fig. 7. Assignment of degradation functions and classification of
measures. Plot of the intervention threshold (red) and of the condition after
a maintenance measure (green). The purple dot indicates a sample item.
The degradation of the equipment according to its age is shifted to the
item (purple arrow). At the intersection with the intervention threshold, the
item can either deteriorate further based on the shifted degradation function
(dashed purple arrow 1©) or receive a maintenance measure that improves
the item’s score to the lower boundary function (dashed purple arrow 2©).

can be carried out, the score of the item will deteriorate
based on the assigned slope even beyond the intervention
threshold until a measure is scheduled which is indicated by
the first dashed purple arrow in Fig. 7. If the model indicates
that an item is to be replaced, but the budget allocated for
replacement is not sufficient, a maintenance measure can be
scheduled to improve the item’s condition given that there is
still budget available for maintenance measures. Therefore,
further maintenance measures beyond the service life are also
included in the model.

V. CONCLUSION

To be able to predict the condition of DB Station&Service
AG’s equipment, the available data was analyzed and evalu-
ated. This resulted in a logarithmic function being the most
appropriate for describing the development of the equipment
condition including maintenance measures. Since only data
from 13 years and no further historical data are available, the
influence of maintenance measures which led to a reduced
average degradation at older ages could not be completely
eliminated from the degradation functions.

Therefore, a life cycle function, which takes maintenance
measures into account, was developed so that the quality
development of an average item can be well described. For
the description of the life cycle, an intervention threshold
and a function for describing the item condition after a
maintenance measure were derived from the data and imple-
mented in the model. Within these two boundary functions,
the life cycle of an average item was defined. To predict the
future condition of an item with an arbitrary initial condition,
the average item degradation is shifted parallel so that it
starts at the condition of the considered item. In addition



to degradation, the need for maintenance measures can be
derived from the model.

The model can hence be used to predict the future condi-
tion of DB Station&Service AG’s equipment and thus the
network-wide grade, taking into account various financial
resources for maintenance and replacement. This prediction
is a valuable contribution to the optimization of maintenance
policies.

The data-driven approach allows a straight forward gen-
eralization to fields where time-resolved information of item
quality is available such as road networks and different kinds
of constructional objects.

VI. FUTURE RESEARCH DIRECTIONS

Since data about the type of maintenance measures and the
number of previous maintenance measures are not available,
we do not consider the effects of previous maintenance
measures and of combinations of maintenance measures in
this paper. Including this information could lead to a more
differentiated view on the effect of maintenance measures
onto the immediate condition improvement and the deterio-
ration rate between the maintenance measures.

A further simplification of our model could be achieved
by replacing the dependence on explicit data points by an
approximation of the underlying distribution for the main-
tenance probabilities. In the class of pedestrian underpasses
considered in this study, for example, the highly linear nature
of the cumulative maintenance frequencies (Fig. 4) suggests
that a uniform distribution could be a viable assumption.

As a next step, the costs of the maintenance and replace-
ment measures must be analyzed and evaluated in order
to include them in the quality prediction. The costs to be
assigned must reflect the measures depicted. Since different
quality benefits result from the maintenance measures, it is
useful to develop the prices for the maintenance measures
as unit prices. The unit price is standardized to the price-
enhancing feature of the item, for example, the surface area
of a platform in square meters, but also to a quality increase
of one quality score point. By using unit prices, costs can
be assigned to each maintenance measure of an item. This
allows the required budget to be determined for the entire
network.

Furthermore, a prioritization logic must be developed to
decide which measures are to be implemented first. Since
there might not be enough budget for all the measures
needed according to the model, both, the maintenance and
replacement measures must be sorted with regard to this
prioritization logic. The measures are then carried out ac-
cording to the resulting sequence. Different prioritization
criteria lead to different implemented measures and thus to
different qualities in the network. Therefore, prioritization
plays an important role in the cause-effect relationship.

Once the costs and the prioritization for measures are
included, the model can be implemented in a software tool.
This simulation has to be validated against real-life data
to prove the model’s plausibility. After this validation, the

software tool should be capable of evaluating the cause-
effect relationship between the funds and quality of DB
Station&Service AG’s equipment.

A potential issue in the practical application of our
approach is the fact that the model does not distinguish
between different maintenance measures of subcomponents
(e.g., replacement of a platform’s floor or replacement of
guide strips for the blind). They are likely to incur system-
atically different costs and yield different improvements of
the quality score. This fact is currently not reflected in our
model as the maintenance measures are modeled as average
measures.

Another practical limitation concerns the applicability of
the model under the existence of clusters within the item
classes. The model describes how an item of a class degrades
on average. Yet, in the construction of items usually different
materials, construction designs, etc., are used depending on
their time of construction, their specific use case, etc.. This
may yield different degradation functions if examined by
clusters. However, on the basis of DB Station&Service AG’s
data, it remains unknown if this is the case, as the data history
is too short and the data base is too small for an assessment
of item clusters.
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